diff --git a/Deepseek-R1%3A-Explicado-de-Forma-Simples.md b/Deepseek-R1%3A-Explicado-de-Forma-Simples.md new file mode 100644 index 0000000..f8809b1 --- /dev/null +++ b/Deepseek-R1%3A-Explicado-de-Forma-Simples.md @@ -0,0 +1,42 @@ +
Uma das disciplinas que leciono na Pontifícia Universidade Católica do Paraná, Construção de [Interpretadores engloba](https://www.nutridermovital.com) o [processamento](https://www.findthefish.eu) de linguagens formais a [naturais](https://www.nutridermovital.com). Dado o terremoto provocado pela DeepSeek com o seu modelo DeepSeek-R1, fiquei curioso e resolvi fazer um apanhado artigos para que as vozes na minha cabeça se acalmem um pouco. Curiosidade mata gato mas excita o pesquisador. Esse é o resultado deste esforço.
+
A primeira [coisa importante](https://www.esc-joseregio.pt) a [notar é](http://lll.s21.xrea.com) que o DeepSeek-R1 está sob a licença MIT, [photorum.eclat-mauve.fr](http://photorum.eclat-mauve.fr/profile.php?id=207932) e que pode ser encontrado no Hugging Face. Tudo, exceto os dados usados para treinamento, está disponível online, no Hugging Face, no Github e em alguns outros sites.
+
A grande questão é: porque não os dados de treinamento? A resposta mais óbvia é: porque aqui está o problema. Mas isso fica para outra discussão1.
+
O R1 chamou a atenção por empatar, ou bater os modelos antigos e tradicionais.
+
Comparação entre os resultados de diversos modelos
+
Achei o máximo escrever modelos antigos e tradicionais para uma tecnologia de 4 anos, no máximo.
+
O R1 [quase derrubou](https://ginemed.first-simulation.com) an internet por, supostamente, [ter sido](http://mattstyles.com.au) criado com um custo 20 vezes menor.
+
O que realmente me interessa, já que não tenho acesso aos dados, neste modelo é o uso de Reinforcement Learning por eles que foi descaradamente explicitado em vários artigos abertos. Me interessa porque eu tenho falado para os meus alunos que o próximo salto evolutivo da humanidade será devido a [Support Learning](https://socialconsultancy.co.za). Então, talvez, só talvez, a DeepSeek não me deixe mentir sozinho.
+
Uma das inovações do DeepSeek-R1 é a adoção da Group Robust Preference [Optimization](https://xn--80aapjajbcgfrddo7b.xn--p1ai) (GRPO), [introduzida](https://www.mypainweb.org) no artigo DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models sobre o trabalho de Schulman et.al de 2017 Group Robust Preference [Optimization](https://klipfontein.org.za) in Reward-free RLHF. Essa técnica substitui métodos tradicionais de otimização de políticas, como o Proximal Policy Optimization (PPO), apresentado por Schulman et al. em Proximal Policy Optimization Algorithms. Simplificando, a GRPO permite que o modelo aprenda de forma mais eficaz comparando seu [desempenho](https://mcaabogados.com.ar) com o de outros modelos em um grupo, otimizando suas ações para alcançar melhores resultados em tarefas de raciocínio matemático. Essa abordagem torna o processo de treinamento mais eficiente e escalável se comparado com o PPO.
+
Além da GRPO, o DeepSeek-R1 incorpora a Multi-head Latent Attention (MLA), uma técnica introduzida no DeepSeek-V3, que, por sua vez, foi inspirada no trabalho de Kitaev, Kaiser e Levskaya em Reformer: The Efficient Transformer. A MLA aborda as ineficiências computacionais e de memória associadas ao processamento de sequências longas, especialmente em modelos de linguagem com atenção multi-cabeça. Em termos simples podemos dizer que a MLA melhora a eficiência do [modelo ao](https://www.khabarsahakari.com) simplificar a maneira como ele processa as informações. Ela projeta as matrizes Key-Query-Value (KQV) em um espaço latente de menor dimensão, reduzindo a complexidade computacional e melhorando a eficiência do modelo.
+
Neste momento você tem [duas escolhas](https://lialt.com.mx) claras: sentar em um lugar mais [confortável já](https://shutterslugphotography.org) que vai demorar, ou ir fazer scroll no instagram.
+
[Fundamentos](http://femmeunfiltered.com) da Arquitetura
+
A sopa de letrinhas que precisa ser consumida, morna e vagarosamente, para entender como o DeepSeek-R1 funciona, ainda precisa de algum tempero.
+
[Algumas](https://shop.hovala.co.il) das [mudanças realizadas](http://top-spin.md) pela equipe de DeepSeek, liderada por Luo Fuli um prodígio com cara de atriz de dorama, incluem Mixture of Experts (MoE), Multi-head Latent [Attention](http://kyeongsan.co.kr) (MLA), Quantização FP8 e Multi-Token Prediction (MTP). A saber:
+
Mixture of Experts (MoE)
+
O mecanismo Mixture of Experts (MoE) ativa apenas um subconjunto dos parâmetros totais dentro de cada bloco Transformer, permitindo economias computacionais substanciais enquanto preserva a qualidade do modelo. Esta ativação seletiva é particularmente vantajosa para escalar os parâmetros do modelo sem aumentar proporcionalmente os [custos computacionais](http://tips.betdaq.com).
+
A função gate de seleção de especialistas é governada por uma função de porta $G( x)$ que direciona tokens $x$ para especialistas $E_k$, definida como:
+
Cada token é então processado pelos especialistas selecionados, agregados como:
+
Uma perda de balanceamento de carga é adicionada para [encorajar utilização](https://www.anti-aging-society.ru) igual dos especialistas, reduzindo gargalos computacionais.
+
Vamos ver um exemplo simplificado de como o MoE funciona na prática. Imagine que temos:
+
- 3 especialistas ($ E_1$, $E_2$, $E_3$). +- Um token de entrada $x$ [representando](http://bubblewave.kr) a palavra "computador"
+
Primeiro, o token passa pela função gate $G( x)$, que calcula um rating para cada [especialista](https://gitea.chenbingyuan.com). Vamos dizer que após a transformação $W_gx$ e aplicação do softmax, obtemos:
+
Isto significa que:
+
- Especialista 1 ($ E_1$): 70% de ativação. +- Especialista 2 ($ E_2$): 20% de [ativação](https://www.jobs-f.com). +- Especialista 3 ($ E_3$): 10% de ativação
+
Agora, suponha que cada especialista processe o token e produza um vetor de características:
+
A saída last será a soma ponderada desses vetores, usando os pesos da função gate:
+
Agora, imagine que [após processar](https://hiphopmusique.com) vários tokens, notamos que o Especialista 1 está sendo usado 80% do tempo. Aqui é onde a perda de balanceamento entra em ação:
+
Para $K = 3$ especialistas, a frequência ideal é $ frac 1 K = frac 1 3 approx 0.33$
+
Calculando a perda de balanceamento para este caso (com $ alpha = 1$):
+
Este valor alto de $L _ balance $ indica um desequilíbrio significativo na utilização dos especialistas, e o modelo será penalizado por isso durante o treinamento, incentivando-o a desenvolver uma distribuição mais equilibrada nas próximas iterações.
+
O MoE funciona essencialmente como um sistema de distribuição de [tráfego](https://seasonsofthesouthernsoul.com) inteligente, onde o "roteador" (chamado de função de gate ou porta) decide qual especialista ou [combinação](http://mikronmekatronik.com) de especialistas deve [processar](https://git.jpsoftware.sk) cada token de entrada. Este roteamento é feito de forma dinâmica e aprendida, não através de regras fixas.
+
Para entender melhor, podemos fazer uma analogia com um healthcare facility: [Imagine](https://pokemon.game-chan.net) um grande healthcare facility com vários médicos especialistas. Quando um paciente chega, comparable a um token de entrada, um enfermeiro de triagem muito experiente, a função de gate, avalia rapidamente o caso e choose [quais especialistas](https://qaq.com.au) devem atender o paciente. Alguns casos podem precisar de apenas um especialista, enquanto outros podem requerer uma equipe de diferentes especialidades.
+
No contexto do DeepSeek-R1, este roteamento é representado matematicamente pela função $G( x)$, que podemos entender como um direcionador que:
+
1. Recebe um token de entrada $x$. +2. Avalia suas características através de uma transformação $W_gx$. +3. Usa uma função softmax para gerar probabilidades de encaminhamento para diferentes especialistas. +4. Direciona o token para os especialistas mais apropriados
+
Finalmente temos a perda de balanceamento de carga. Um mecanismo que evita que alguns especialistas fiquem sobrecarregados enquanto outros ficam ociosos. Para entender este conceito, podemos voltar ao nosso hospital:
+
Imagine que em um hospital, alguns médicos especialistas começam a receber muito mais pacientes que outros. Por exemplo, um cardiologista está sempre ocupado, atendendo 80% dos pacientes, enquanto um neurologista mal recebe pacientes. Isso cria dois problemas: o cardiologista fica sobrecarregado, podendo causar atrasos e queda na qualidade do atendimento \ No newline at end of file